A classification of hyperbolic manifolds related to the three-dimensional torus
نویسنده
چکیده
L. Paoluzzi constructed a family of compact orientable three-dimensional hyperbolic manifolds with totally geodesic boundary, which were, by construction, closely related to the three-dimensional torus. This paper gives their complete classification up to isometry, and also their isometry groups. The key tool is the so-called canonical decomposition of hyperbolic manifolds.
منابع مشابه
Classification of Partially Hyperbolic Diffeomorphisms in 3-manifolds with Solvable Fundamental Group
A classification of partially hyperbolic diffeomorphisms on 3-dimensional manifolds with (virtually) solvable fundamental group is obtained. If such a diffeomorphism does not admit a periodic attracting or repelling two-dimensional torus, it is dynamically coherent and leaf conjugate to a known algebraic example. This classification includes manifolds which support Anosov flows, and it confirms...
متن کاملPointwise Partial Hyperbolicity in 3-dimensional Nilmanifolds
We show the existence of a family of manifolds on which all (pointwise or absolutely) partially hyperbolic systems are dynamically coherent. This family is the set of 3-manifolds with nilpotent, non-abelian fundamental group. We further classify the partially hyperbolic systems on these manifolds up to leaf conjugacy. We also classify those systems on the 3-torus which do not have an attracting...
متن کاملToroidal Dehn fillings on hyperbolic 3-manifolds
We determine all hyperbolic 3-manifolds M admitting two toroidal Dehn fillings at distance 4 or 5. We show that if M is a hyperbolic 3manifold with a torus boundary component T0, and r, s are two slopes on T0 with ∆(r, s) = 4 or 5 such that M(r) and M(s) both contain an essential torus, then M is either one of 14 specific manifolds Mi, or obtained from M1, M2, M3 or M14 by attaching a solid tor...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملHyperbolic Four-manifolds with One Cusp
We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-man...
متن کامل